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An important component of many real world learning problems is the temporal credit as-
signment problem-the problem of assigning credit or blame to individual components of a
temporally-extended plan of action, based on the success or failure of the plan as a whole. To
solve such a problem, the learner must be equipped with the ability to assess the long-term
consequences of particular choices of action and must be willing to forego an immediate payoff
for the prospect of a longer term gain. Moreover, because most real world problems involving
prediction of the future consequences of actions involve substantial uncertainty, the learner
must be prepared to make use of a probability calculus for assessing and comparing actions.

There has been increasing interest in the temporal credit assignment problem, due princi-
pally to the develop-lent of learning algorithms based on the theory of dynamic programming
(DP) (Barto, Sutton, & Watkins, 1990; Werbos, 1992). Sutton's (1988) TD(A) algorithm
addressed the problem of learning to predict in a Markov environment, utilizing a temporal
difference operator to update the predictions. Watkins' (1989) Q-learning algorithm extended
Sutton's work to control problems, and also clarified the ties to dynamic programming.

In the current paper, our concern is with the stochastic convergence of DP-based learning
algorithms. Although Watkins (1989) and Watkins and Dayan (1992) proved that Q-learning
converges with probability one, and Dayan (1992) observed that TD(0) is a special case of Q-
learning and therefore also converges with probability one, these proofs rely on a construction
that is particular to Q-learning and fail to reveal the ties of Q-learning to the broad theory of
stochastic approximation (e.g., Wasan, 1969). Our goal here is to provide a simpler proof of
convergence for Q-learning by making direct use of stochastic approximation theory. We also
show that our proof extends to TD(A) for arbitrary A. Several other authors have recently
presented results that are similar to those presented here: Dayan and Sejnowski (1993) for
TD(A), Peng and Williams (1993) for TD(A), and Tsitsiklis (1993) for Q-learning. Our results
appear to be closest to those of Tsitsiklis (1993).

We begin with a general overview of Markovian decision problems and DP. We introduce
the Q-learning algorithm as a stochastic form of DP. We then present a proof of convergence
for a general class of stochastic processes of which Q-learning is a special case. We then discuss
TD(A) and show that it is also a special case of our theorem.

Markovian decision problems

A useful mathematical model of temporal credit assignment problems, studied in stochastic
control theory (Aoki, 1967) and operations research (Ross, 1970), is the Markovian decision
problem. Markovian decision problems are built on the formalism of controlled Markov chains.
Let S = 1, 2,.. ., N be a discrete state space and let U(i) be the discrete set of actions available
to the learner when the chain is in state i. The probability of making a transition from state i
to state j is given by pij(u), where u E U(i). The learner defines a policy A, which is a function
from states to actions. Associated with every policy 1 is a Markov chain defined by the state
transition probabilities pij(p( i)). r

There is an instantaneous cost ci(u) associated with each state i and action u, where c,(u)
is a random variable with expected value ej(u). We also define a value function V1(i), which is
the expected sum of discounted future costs given that the system begins in state i and follows
policy J:

N-i
V(i)= im E cp(st))Iso = i}, (1)

t=O --

where st E S is the state of the Markov chain at time t. Future costs are discounted by a factor
. sd/or
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ytt, where 3y E (0, 1). We wish to find a policy that minimizes the value function:

V*(i) = min V,(i). (2)
LA

Such a policy is referred to as an optimal policy and the corresponding value function is referred
to as the optimal value function. Note that the optimal value function is unique, but an optimal
policy need not be unique.

Markovian decision problems can be solved by dynamic programming (Bertsekas, 1987).
The basis of the DP approach is an equation that characterizes the optimal value function.
This equation, known as Bellman's equation, characterizes the optimal value of the state in
terms of the optimal values of possible successor states:

V*(i) = mrin i(u) + - pij(u)V(j)}. (3)
tsEU(i) jES

To motivate Bellman's equation, suppose that the system is in state i at time t and consider
how V*(i) should be characterized in terms of possible transitions out of state i. Suppose that
action u is selected and the system transitions to state j. The expression ci(u) + 3'V=(j) is
the cost of making a transition out of state i plus the discounted cost of following an optimal
policy thereafter. The minimum of the expected value of this expression, over possible choices
of actions, seems a plausible measure of the optimal cost at i and by Bellman's equation is
indeed equal to V*(i).

There are a variety of computational techniques available for solving Bellman's equation.
The technique that we focus on in the current paper is a iterative algorithm known as value
iteration. Value iteration solves for V*(i) by setting up a recurrence relation for which Bellman's
equation is a fixed point. Denoting the estimate of V*(i) at the kth iteration as V(k)(i), we
have:

v(k+l)(i) = min {f ,(u) + t E pj(U)V(k)(j)} (4)
UEU(i) jES

This iteration can be shown to converge to V*(i) for arbitrary initial V(0 )(i) (Bertsekas, 1987).
The proof is based on showing that the iteration from V(k)(i) to V(k+l)(i) is a contraction
mapping. That is, it can be shown that:

max IV(k+l)(i) - V*(i)I < 7 max IV(k)(i) _ V*(i)I, (5)
S S

which implies that V(k)(i) converges to V*(i) and also places an upper bound on the convergence
rate.

Watkins (1989) utilized an alternative notation for expressing Bellman's equation that is
particularly convenient for deriving learning algorithms. Define the function Q*(i, u) to be the
expression appearing inside the "rmin" operator of Bellman's equation:

Q*(i,u) = (U) + - Zpij(u)V(j) (6)
jES

Using this notation Bellman's equation can be written as follows:

V*(i) = min Q*(i,u). (7)
uEU(i)

Moreover, value iteration can be expressed in terms of Q functions:

Q(k+l)(i, u) = Zi(u) + 3 _ pij(u)V(k)(j), (8)
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where V(k)(i) is defined in terms of Q(k)(i, u) as follows:

V(k)(i)= min Q(k)(i2u). (9)
uEU(i)

The mathematical convenience obtained from using Q's rather than V's derives from the fact
that the minimization operator appears inside the expectation in Equation 8, whereas it appears
outside the the expectation in Equation 4. This fact plays an important role in the convergence
proof presented in this paper.

The value iteration algorithm in Equation 4 or Equation 8 can also be executed asyn-
chronously (Bertsekas & Tsitsiklis, 1989). In an asynchronous implementation, the update of
the value of a particular state proceeds in parallel with the updates of the values of other states.
Bertsekas & Tsitsiklis (1989) show that as long as each state is updated infinitely often and
each action is tried an infinite number of times in each state, then the asynchronous algorithm
eventually converges to the optimal value function. Moreover, asynchronous execution has the
advantage that it is directly applicable to real-time Markovian decision problems (RTDP; Barto,
Bradtke, & Singh, 1993). In a real-time setting, the system uses its evolving value function
to choose control actions for an actual process and updates the values of the states along the
trajectory followed by the process.

Dynamic programming serves as a starting point for deriving a variety of learning algorithms
for systems that interact with Markovian environments (Barto, Bradtke, & Singh, 1993; Sutton,
1988; Watkins, 1989). Indeed, real-time dynamic programming is arguably a form of learning
algorithm as it stands. Although RTDP requires that the system possess a complete model of
the environment (i.e., the probabilities pii(u) and the expected costs ei(u) are assumed known),
the performance of a system using RTDP improves over time, and its improvement is focused
on the states that are actually visited. The system "learns" by transforming knowledge in one
format (the model) into another format (the value function).

A more difficult learning problem arises when the probabilistic structure of the environment
is unknown. There are two approaches to dealing with this situation (cf. Barto, Bradtke,
& Singh, 1993). An indirect approach acquires a model of the environment incrementally, by
estimating the costs and the transition probabilities, and then uses this model in an ongoing DP
computation. A direct method dispenses with constructing a model and attempts to estimate
the optimal value function (or the optimal Q-values) directly. In the remainder of this paper,
we focus on direct methods, in particular the Q-learning algorithm of Watkins (1989) and the
TD(A) algorithm of Sutton (1988).

The Q-learning algorithm is a stochastic form of value iteration. Consider Equation 8, which
expresses the update of the Q values in terms of the Q values of successor states. To perform
a step of value iteration requires knowing the expected costs and the transition probabilities.
Although such a step cannot be performed without a model, it is nonetheless'possible to estimate
the appropriate update. For an arbitrary V function, the quantity EjESpii(u)V(j) can be
estimated by the quantity V(j), if successor state j is chosen with probability pij(u). But
this is assured by simply following the transitions of the actual Markovian environment, which
makes a transition from state i to state j with probability pii(u). Thus the sample value of V at
the successor state is an unbiased estimate of the sum. Moreover ci(u) is an unbiased estimate
of ai(u). This reasoning leads to the following relaxation algorithm, where we use Qt(i, u) and
Vt(i) to denote the learner's estimates of the Q function and V function at time t, respectively:

Qt+l(st, tUt) = (1 - at(st, ut))Qt(,st, ut) + at(st, ut)[c.,(ut) + 'Yvt(st+i)] (10)
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where
Vt(st+)= Mir, Qt(st, ut). (11)

uEU(sg+0)

The variables at(st, ut) are zero except for the state that is being updated at time t.

The fact that Q-learning is a stochastic form of value iteration immediately suggests the use

of stochastic approximation theory, in particular the classical framework of Robbins and Monro

(1951). Robbins-Monro theory treats the stochastic convergence of a sequence of unbiased
estimates of a regression function, providing conditions under which the sequence converges to

a root of the function. Although the stochastic convergence of Q-learning is not an immediate
consequence of Robbins-Monro theory, the theory does provide results that can be adapted
to studying the convergence of DP-based learning algorithms. In this paper we utilize a result
from Dvoretzky's (1956) formulation of Robbins-Monro theory to prove the convergence of both
Q-learning and TD(A).

Convergence proof for Q-learning

Our proof is based on the observation that the Q-learning algorithm can be viewed as a stochas-
tic process to which techniques of stochastic approximation are generally applicable. Due to the
lack of a formulation of stochastic approximation for the maximum norm, however, we need to
slightly extend the standard results. This is accomplished by the following theorem the proof
of which is given in Appendix A.

Theorem 1 A random iterative process A,.+ 1(x) = (1 - ct,(x))An(x) + i3n(x)Fn(x) converges

to zero w.p. 1 under the following assumptions:

1) The state space is finite.

2) Ena,(x) = c0, En ao(x) < cc, En On(x) = cc, nO,' (X) < cc, and E{In(x)IP,} <
E{ox,(x)IPn} uniformly w.p.1.

3) 11 E{F,,(x)lP,} IIw< 7 II An 11W, where - E (0, 1).

4) Var{Fn(x)1P,n} 5 C(l+ 11 An 11w) 2, where C is some constant.

Here Pn = {A,,An_ ,...,Fn-1,...,an-1-,,n-1,...} stands for"the past at step n. Fn(x),
a,,(x) andf,6n(x) are allowed to depend on the past insofar as the above conditions remain valid.
The notation i1" 11w refers to some weighted maximum norm.

In applying the theorem, the A, process will generally represent the difference between a

stochastic process of interest and some optimal value (e.g., the optimal value function). The
formulation of the theorem therefore requires knowledge to be available about the optimal

solution to the learning problem before it can be applied to any algorithm whose convergence is
to be verified. In the case of Q-learning the required knowledge is available through the theory
of DP and Bellman's equation in particular.

The convergence of the Q-learning algorithm now follows easily by relating the algorithm to

the converging stochastic process defined by Theorem 1.1 In the form of the theorem we have:
1 We note that the theorem is more powerful than is needed to prove the convergence of Q-learning. Its

generality, however, allows it to be applied to other algorithms as well (see the following section on TD(A).

4



Theorem 2 The Q-learning algorithm given by

Qt+i(st, ut) = (1 - at(st, ut))Qt(st, ut) + at(st, ut)[c.J(t) + -Yvt(st+i)]

converges to the optimal Q*(s, u) values if

1) The state and action spaces are finite.

2) _t at(s, u) = oc and Et at (s, u) < oo uniformly w.p.1.

3) Var{c,(u)) is bounded.

3) If -y = 1 all policies lead to a cost free terminal state w.p.1.

Proof. By subtracting Q*(s, u) from both sides of the learning rule and by defining
At(s, u) = Qt(s, u) - Q*(s, u) together with

Ft(s, u) = c.(u) + yVt(s.et) - Q*(s, u) (12)

the Q-learning algorithm can be seen to have the form of the process in theorem 1 with/ 3t(s, u) =

at($, U).
To verify that Ft(s, u) has the required properties we begin by showing that it is a contraction

mapping with respect to some maximum norm. This is done by relating Ft to the DP value
iteration operator for the same Markov chain. More specifically,

maxlE{Ft(i,u)}I = -ymax[ I j.p (u)[Vt(j) - V*(j)]I

<- max EPii(u)maxlQt(j,v)- Q'(j,v)l

=-y max ~P,,(u)VA(j)-= T(V")(i)

where T is the DP value iteration operator for the case where the costs associated with each
state axe zero. If -t < 1 the contraction property of T and thus of Ft can be seen directly
from the above formulas. When the future costs are not discounted (-- = 1) but the chain is
absorbing and all policies lead to the terminal state w.p.1 there still exists a weighted maximum
norm with respect to which T is a contraction mapping (see e.g. Bertsekas & Tsitsiklis, 1989).

The variance of Ft(s,u) given the past is within the bounds of theorem 1 as it depends on
Qt(s, u) at most linearly and the variance of c8(u) is bounded.

Note that the proof covers both the on-line and batch versions. 0

The TD(A) algorithm

The TD(A) (Sutton, 1988) is also a DP-based learning algorithm that is naturally defined in
a Maxkovian environment. Unlike Q-learning, however, TD does not involve decision-making
tasks but rather predictions about the future costs of an evolving system. TD(A) converges to
the same predictions as a version of Q-learning in which there is only one action available at
each state, but the algorithms are derived from slightly different grounds and their behavioral

5



differences are not well understood. In this section we introduce the algorithm and its derivation.
The proof of convergence is given in the following section.

Let us define Vt(i) to be the current estimate of the expected cost incurred during the
evolution of the system starting from state i and let ci denote the instantaneous random cost
at state i. As in the case of Q-learning we assume that the future costs are discounted at each
state by a factor -. If no discounting takes place (- = 1) we need to assume that the Markov
chain is absorbing, that is, there exists a cost free terminal state to which the system converges
with probability one.

We are concerned with estimating the future costs that the learner has to incur. One way
to achieve these predictions is to simply observe n consecutive random costs weighted by the
discount factor and to add the best estimate of the costs thereafter. This gives us the estimate

Vt()(i,) = c, + c, + - , 2 . + + + i,+,,_ + ,nV-(it+ ) (13)

The expected value of this can be shown to be a strictly better estimate than the current
estimate is (Watkins, 1989). In the undiscounted case this holds only when n is larger than
some chain-dependent constant. To demonstrate this let us replace Vt with V* in the above
formula giving E{Vt*(n)(it)} = V*(it) which implies

m axIEVt(")(i)}- V'(i)I • maxPr{rmi _> n} maxlV,(i) - V*(i)I (14)

where mi is the number of steps in a sequence that begins in state i (infinite in the non-
absorbing case). This implies that if either 7 < 1 or n is large enough so that the chain

can terminate before n steps starting from an arbitrary initial state then the estimate V(') is
strictly better than Vt. In general, the larger n the more unbiased the estimate is as the effect
of incorrect Vt vanishes. However, larger n increases the variance of the estimate as there are
more (independent) terms in the sum.

Despite the error reduction property of the truncated estimate it is difficult to calculate in
practice as one would have to wait n steps before the predictions could be updated. In addition
it clearly has a huge variance. A remedy to these problems is obtained by constructing a new
estimate by averaging over the truncated predictions. TD(A) is based on taking the geometric
average:

v"(i) = (1- \) F \ (15)
n=1

As a weighted average it is still a strictly better estimate than Vt(i) with the additional benefit
of being better in the undiscounted case as well (as the summation extends to infinity). Fur-
thermore, we have introduced a new parameter A which affects the trade-off between the bias
and variance of the estimate (Watkins, 1989). An increase in A puts more weight on less biased
estimates with higher variances and thus the bias in Vt\ decreases at the expense of a higher
variance.

The mathematical convenience of using the geometric average can be seen as follows. Given
the estimates Vt(i) the obvious way to use them in a learning rule is

'/+,(it) = V(it) + a[Vt"(i0) - Vt(it)] (16)

In terms of prediction differences, that is

At(it) = ci, + YVt(it+,) - VM(it) (17)

6



the geometric weighting allows us to write the correction term in the learning rule as

Vx(it) - V,(it) = A,(i,) + (Ay)YA,(it+,) + (A'y) 2A. (it+2 ) + (18)

Note that up to now the prediction differences that need to be calculated in the future depend on
the current Vt(i). If the chain is nonabsorbing this computational implausibility can, however,
be overcome by updating the predictions at each step with the prediction differences calculated
by using the current predictions. This procedure gives the on-line version of TD(A):

t

Vt+i(i) = Vt(i) + ta/t(it) Z(eA)t-X(k) (19)
k=0O

where xj(k) is the indicator variable of whether state i was visited at kh step (of a sequence).
Note that the sum contains the effect of the modifications or activity traces initiated at past time
steps. Moreover, it is important to note that in this case the theoretically desirable properties
of the estimates derived earlier may hold only asymptotically (see the convergence proof in the
next section).

In the absorbing case the estimates Vt(i) can also be updated off-line, that is, after a
complete sequence has been observed. The learning rule for this case is derived simply from
collecting the correction traces initiated at each step of the sequence. More concisely, the total
correction is the sum of individual correction traces illustrated in eq. (18). This results in the
batch learning rule

m t

V.+I(i) = V0(i) + C. E A.(i,) Z(-yA)t-X,(k) (20)
t=i k=O

where the (m + 1)th step is the termination state.
We note that the above derivation of the TD(A) algorithm corresponds to the specific choice

of a linear representation for the predictors Vt(i) (see, e.g., Dayan, 1992). Learning rules for
other representations can be obtained using gradient descent but these are not considered here.
In practice TD(A) is usually applied to an absorbing chain thus allowing the use of either the
batch or the on-line version but the latter is usually preferred.

Convergence of TD(A)

As we are interested in strong forms of convergence we need to modify the algorithm slightly.
The learning rate parameters a, are replaced by c!,(i) which satisfy ooa,•(i) = 00 and

a' c(i) < oo uniformly w.p.1. These parameters allow asynchronous updating and they
can, in general, be random variables. The convergence of the algorithm is guaranteed by the
following theorem which is an application of Theorem 1.

Theorem 3 For any finite absorbing Markov chain, for any distribution of starting states with
no inaccessible states, and for any distributions of the costs with finite variances the TD(A)
algorithm given by

1)

M 
t

V.+i(i) = Vn(i) + an(i)Z[c1 , + "V.(i,+i) - Vn(i,)] Z(_yA)-kX,(k)
t=1 k=--1

7



2)

t

V,+i(i) = Vt(i) + Qt(i)[tC, + ",Vt(it+i) - (k)(it)1 -evA)t-%atk
k=1

converges to the optimal predictions w.p.1 provided n, a,(i) = • and n an(i) < 00 unsorrny
w.p.1 and /,A E [0,1] with 7 A < 1.

Proof for (1): Using the ideas described in the previous section the learning rule can be
written as

V.+,(Si) = V.(i) +a•.(i)[Gni. (i) re (i) ]
E m(i)})

Gn(i) = EVm(t)} i k)

where Vn(i; k) is an estimate calculated at the Vt occurence of state i in a sequence and for
mathematical convenience we have made the transformation a.(i) -- E{ m(i)}a(i), where m(i)
is the number of times state i was visited during the sequence.

To apply Theorem 1 we subtract V*(i), the optimal predictions, from both sides of the
learning equation. By identifying O,(i) := an(i)m(i)/E{m(i)}, 6,,(i) := an(i), and Fe(i) :=
G,(i) - V*(i)m(i)/E{m(i)} we need to show that these satisfy the conditions of Theorem 1.
For an(i) and i,3(i) this is obvious. We begin here by showing that F,(i) indeed is a contraction
mapping. To this end,

max IE{Fn(i) I V,,}j =

max E{ (.)}E{(Vnh(i; 1) - V*(i)) + (Vn(i; 2) - V"(i)) + ... V}

which can be bounded above by using the relation

IE{V,'(i; k) - V*(i) I vn}I

"_ E { IE{V,(i; k) - V'(i) m(i) 2 k, Vn}l0(m(i) - k) I V}

"< P{m(i) > k}IE{IV(i) - V*(i) IV,}I
_ yP{m(i) 2_ k} max IVn(i) - V*(i)I

where O(x) = 0 if x < 0 and 1 otherwise. Here we have also used the fact that Vý\(i) is a
contraction mapping independent of possible discounting. As -k P{m(i) > k} = E{m(i)} we
finally get

maxIE{F,,(i) I V.}[ < 7 maxIV,(i)- V'(i)I

The variance of F,(i) can be seen to be bounded by

Efm4 } maxIV (i)I2

For any absorbing Markov chain the convergence to the terminal state is geometric and thus
for every finite k, E{mk} _• C(k), implying that the variance of F,(i) is within the bounds of

8



theorem 1. As Theorem I is now applicable we can conclude that the batch version of TD(A)
converges to the optimal predictions w.p.l. 0

Proof for (2) TP. proof for the on-line version is achieved by showing that the effect
of the on-line up:'-ing vanishes in the limit thereby forcing the two versions to be equal
asymptotically. We view the on-line version as a batch algorithm in which the updates are
made after each complete sequence but are made in such a manner so as to be equal to those
made on-line.

Define G',(i) = G.(i) + R.(i) to be the new batch estimate where R,(i) is the difference
between the on-line and batch estimates. We define the new batch learning parameters to
be the maxima over a sequence, that is &,(i) = maxtEs at(i). Now R,(i) consists of terms
proportional to

[c, + 'yV.(it+i) - V0(i0)1

the expected value of which can be bounded by A = 2 11 V, - V" 11. Assuming that -rA < 1
(which implies that the multipliers of the above terms are bounded) we can get an upper bound
for the expected value of the correction R,,(i). Let us define RP1 to be the expected difference
between the on-line estimate after t steps and the first t terms of the batch estimate. We can
bound R,,,t(i) readily by the update rule resulting in the iteration

II *,,.,+i 11_1161 &, C1(A+ II &, 1I)

where R,,,,,(i) = E{R,,(i) I V,}, R,, 0(i) 0, and C is some constant. Since 11 t- I1 goes to zero
w.p.1 the above iteration implies that &R,,,, 11-- 0 w.p.1 giving

max IE{R,(i) I V,}l < C,, max IV,(i) - V*(i)I
i I

where C,, - 0 w.p.1. Therefore using the results for the batch algorithm, F.(i) = G'(i) -
V'(i)m(i)/E{m(i)} satisfies

max IE{F.(i)}l < (-v + C.) max IV.(i) - V*(i)I
i i

where for large n (-y + Cn) < 1' < 1 w.p.1. The variance of Rn(i) and thereby that of Ft'l(i) are
within the bounds of theorem 1 by linearity. This completes the proof. 0

Conclusions

In this paper we have extended results from stochastic approximation theory to cover asyn-
chronous relaxation processes which have a contraction property with respect to some maximum
norm (Theorem 1). This new class of converging iterative processes is shown to include both
the Q-learning and TD(A) algorithms in either their on-line or batch versions. We note that
the convergence of the on-line version of TD(A) has not been shown previously. We also wish
to emphasize the simplicity of our restlts. The convergence proofs for Q-learning and TD(A)
utilize only high-level statistical properties of the estimates used in these algorithms and do not
rely on constructions specific to the algorithms. Our approach also sheds additional light on
the similarities between Q-learning and TD(A).

Although Theorem 1 is readily applicable to DP-based learning schemes, the theory of
Dynamic Programming is important only for its characterization of the optimal solution and
for a contraction property needed in applying the theorem. The theorem can be applied to
iterative algorithms of different types as well.
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Finally we note that Theorem I can be extended to cover processes tl:at do not show the
usual contraction property thereby increasing its applicability to algorithms of possibly more
practical importance.

Proof of Theorem 1

In this section we provide a detailed proof of the theorem on which the convergence proofs for
Q-learning and TD(A) were based. We introduce and prove three essential lemmas, which will
also help to clarify ties to the literature and the ideas behind the theorem, followed by the proof
of Theorem 1. The notation 11 • 11w= maxr I -/W(x)J will be used in what follows.

Lemma 1 A random process

W +-)Wn1 x = ( - + (x)r(x)

converges to zero with probability one if the following conditions are satisfied:

1) E'Qn n(x)- o= , E.a2(z) < o0, En03,(z) = 00, and EnI32(x) < on uniformly w.p.1.

2) E{rn(x)IPn} = 0 and E{rn2(X)jP} <_ C W.p.l, where

Pn = {W,, Wn-1,. -.- , rn-1, rn-2. , an-1, %-2, • •.I, 3 n-1,1n-2,. .-

All the random variables are allowed to depend on the past P,.

Proof. Except for the appearance of o3n(x) this is a standard result. With the above
definitions convergence follows directly from Dvoretzky's extended theorem (Dvoretzky, 1956).

Lemma 2 Consider a random process Xn+i(z) = Gn(Xn, X), where

Gn(OXnX) = OGn(XnX)

Let us suppose that if we kept 11 Xn 11 bounded by scaling, then Xn would converge to zero w.p. 1.
This assumption is sufficient to guarantee that the original process converges to zero w.p. 1.

Proof. Note that the scaling of X, at any point of the iteration corresponds to having

started the process with scaled X 0 . Fix some constant C. If during the iteration, 11 X, 11
increases above C, then Xn is scaled so that 11 X, 11= C. By the assumption then this process
must converge w.p.1. To show that the net effect of the corrections must stay finite w.p.1 we
note that if 11 X, 11 converges then for any e > 0 there exists M, such that 11 Xn I[< c < C for
all n > M, with probability at least 1 - f. But this implies that the iteration stays below C
after M, and converges to zero without any further corrections. 0

Lemma 3 A stochastic process Xn+I(z) = (1 - a(z))X,(z) + 'y,3(z) 11 XnI1 converges to zero
w.p.1 provided

1) x E S, where S is a finite set.

2) FCno,(x) = o0, En' a2.(z) < o0, 'n3 n(x) = 00, FnI32(x) < O0, and E{l3,(z)} <
Efa,(z)} uniformly w.p.I.

10



Proof. Essentially the proof is an application of Lemma 2. To this end, assume that we
keep 11 Xn j11: C1 by scaling which allows the iterative process to be bounded by

IX•+ 1(x)l _5 (1 - a.C(x))IX.(x)l + 7h.(x)Ci

This is linear in IX,,(x) and can be easily shown to converge w.p.1 to some X*(z), where
11 X* 11:5 7C 1. Hence, for small enough e, there exists MI(c) such that 11 X, 11•5 C1 /(1 + E)
for all n > MI(c) with probability at least p/(c). With probability pl(e) the procedure can be
repeated for C2 = C1/(1 + c). Continuing in this manner and choosing pk(E) so that f'kPk(0)

goes to one as e -* 0 we obtain the w.p.1 convergence of the bounded iteration and Lemma 2
can be applied. 0

Theorem 1 A .random iterative process An+I(z) = (1 - an(z))An(z) + I,,(z)F,(z) converges

to zero w.p.1 under the following assumptions:

1) The state space is finite.

2) En a,,(T) = 00, En, ac(X) < 00, En #3(T) = 0c, Engn(X) < 00, and E{f,(z)IP,} <
E{ an (x)IPn} uniformly w.p. 1

3) 11 E{Fn(z)IPn} IIw< - II An IIw, where -y E (0, 1).

4) Var{FF(z)lP1} < C(1+ 11 An IIw) 2, where C is some constant.

Here Pn = {X,,X,-l,...,F,- ,...,- t ... , ,- ... } stands for the past at step n. F,(x),
cn(z) and/O,,(x) are allowed to depend on the past insofar as the above conditions remain valid.
The notation I1" (1w refers to some weighted mazimum norm.

Proof. By defining r,(z) = Ft(z) - E{F, (z)IP,} we can decompose the iterative process
into two parallel processes given by

bn,(--) -= (1 - an(z))6,(xz) + O,(z)E{F,(z)IP,}
W. I(z) = (1- a,(z))W,.(z)+/Pn(z)rn(z) (21)

where An(z) = 6,(z) + wn(z). Dividing the equations by W(z) for each z and denoting
6n'(z) = 6,(z)/W(z), w.(z) = wto(z)/W(z), and r.(z) = rn(z)/W(z) we can bound the 6.
process by assumption 3) and rewrite the equation pair as

16'.+x(z)I < (1 - a(z))l6'.(z)l + 7•.(z) Ii j'I + w'. I

W'+1(z) = (1 - oa(z))W'(z) + 7-/(x)rn'(x)

Assume for a moment that the An process stays bounded. Then the variance of r' (z) is
bounded by some constant C and thereby w' converges to zero w.p.1 according to Lemma 1.
Hence, there exists M such that for all n > M 11 w'n J< c with probability at least 1 - e. This
implies that the 6n process can be further bounded by

16n'+i (X)l _ (1 - an(z))16'.(x) + 7.(z) 1'. + E 11

with probability > 1 - c. If we choose C such that 7 (C + 1)/C < 1 then for II 6b' I1> Ce

7 II b'. + C 11-5 y(C + 1)/C 11 6n I1

11



and the process defined by this upper bound converges to zero w.p.1 by Lemma 3. Thus 11 6b j
converges w.p.1 to some value bounded by CE which guarantees the w.p.1 convergence of the
original process under the boundedness assumption.

By assumption (4) rT,(x) can be written as (1+ 11 6b, + w,, II)s,(z), where EZs8(z)3P2, 1 < C.
Let us now decompose w,n as un + v, with

U+(= (1 - X))UL(z) + 70n(-) II 6, + Un + v 1 I

and v, converges to zero w.p.1 by Lemma 1. Again by choosing C such that -y(C + 1)/C < 1
we can bound the b' and u,, processes for 11 6n + un 11> CE. The pair (6n, u,) is then a
scale invaxiant process whose bounded version was proven earlier to converge to zero w.p.1 and
therefore by Lemma 2 it too converges to zero w.p.1. This proves the w.p.1 convergence of the
triple 6:,, un, and v,1 bounding the original process. 0
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